Résumé | We extend the quantitative synthesis framework by going beyond the worst-case. On the one hand, classical analysis of two-player games involves an adversary (modeling the environment of the system) which is purely antagonistic and asks for strict guarantees. On the other hand, stochastic models like Markov decision processes represent situations where the system is faced to a purely randomized environment: the aim is then to optimize the expected payoff, with no guarantee on individual outcomes. We introduce the beyond worst-case synthesis problem, which is to construct strategies that guarantee some quantitative requirement in the worst-case while providing an higher expected value against a particular stochastic model of the environment given as input. This problem is relevant to produce system controllers that provide nice expected performance in the everyday situation while ensuring a strict (but relaxed) performance threshold even in the event of very bad (while unlikely) circumstances. We study the beyond worst-case synthesis problem for two important quantitative settings: the mean-payoff and the shortest path. In both cases, we show how to decide the existence of finite-memory strategies satisfying the problem and how to synthesize one if one exists. We establish algorithms and we study complexity bounds and memory requirements. |